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ABSTRACT: Disseminated cancer remains a largely fatal
disease. While systemic therapy can have some initial success,
it is rarely durable. Typically, populations of cancer cells
resistant to therapy emerge quickly requiring progressively less
effective second, third, and fourth line therapies until the patient
succumbs. Cancer cells possess a large repertoire of heritable
phenotypic strategies that can be used to confer resistance to
one or more therapeutic drugs. In addition, environmental
factors such as ischemia and hypoxia can reduce therapeutic
effects by limiting drug delivery or toxicity. Here, we use a fitness
generating function (G-function) approach to model tumor response with respect to evolutionary adaptation and microenviron-
mental conditions in response to various therapeutic strategies. We examine tumor cell death and the evolution of resistance in single
and two drug therapies as well as alternative “evolutionary” approaches. We demonstrate that even monotherapy would be highly
successful in the absence of tumor evolution or environmentally mediated resistance. However, environmental and evolutionary
factors dramatically reduce the effectiveness of therapy. Two-drug therapy in which adaptation requires two different phenotypic
changes will maximally reduce tumor size and delay onset of resistance, but actual eradication of the tumor population is rare. We
demonstrate that multiagent therapies in which the first drug both achieves tumor cell toxicity and drives phenotypic adaptation that
renders the cell more vulnerable to a second therapy can be highly successful in maintaining durable tumor control. Examples of
clinical trials that exploit these results are presented. We conclude that the development of more lethal (cytotoxic) drugs is not likely
to fundamentally change the outcome of therapy. Instead, new approaches that incorporate evolutionary strategies into target and
drug selection are needed.
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B INTRODUCTION

With few exceptions, metastatic cancers remain incurable.
A fundamental cause of treatment failures is the capacity of
cancer cells to rapidly evolve therapeutic resistance. Many cancer
therapies initially kill a large percentage of tumor cells, resulting
in tumor regression or stabilization. However, malignant cells
have a significant evolutionary capacity and typically adapt to
therapy through a large repertoire of available heritable pheno-
typic strategies. There are two general mechanisms of resistance:
(1) phenotypic adaptation in which cells evolve strategies, such
as upregulation of p-glycoprotein, that allows survival in drug
levels that would be lethal to the unadapted phenotype," and (2)
de novo resistance in which pockets of cancer cells, although
phenotypically sensitive, find protection by environmental fac-
tors such as ischemia and hypoxia that reduce the drug delivery
and/or cytotoxicity.” Repeated treatments yield subpopulations
of resistant phenotypes that typically emerge, resulting in cancer
progression and patient death.

Typical cancer chemotherapy is administered in an evolutio-
narily static manner with drugs, doses, and schedules fixed
according to rigid protocol. Therapy changes only in the event
of unacceptable toxicity or unequivocal evidence of cancer
progression. Yet, cancers are ecologically and evolutionarily
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dynamic systems that begin to adapt and change upon entry of
the therapeutic agent. We have proposed that this mismatch
between treatment and cancer dynamics contributes significantly
to the rapid emergence of resistant subpopulations.

We propose that cancer therapy must become as adaptive and
dynamic as the system it is treating. This requires application of
Darwinian principles to understand the processes that lead to
phenotypic adaptation and growth of tumor cells insensitive to
therapy. Anticipating the evolutionary responses of cancers to
treatment permits “evolutionarily enlightened” cancer therapy. We
suggest conceptualizing the evolutionary dynamics of resistance in
a manner analogous to the management and control of invasive
pests.” Attempts to eradicate disseminated invasive pests with
chemical pesticides have been almost universally unsuccessful.”®
However, control of pest populations with judicious use of
pesticide or with biologic agents—predators, parasites, pathogens,
and parasitoids—has often met with considerable success.®
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A key factor in the evolutionary dynamics of adaptation to any
therapy (whether pesticides or cytotoxic cancer drugs) is the
phenotypic cost of resistance. In other words, successful adapta-
tion to any toxic agent requires diversion of resources to support
the phenotypic strategy. These resources are, therefore, not
available for proliferation and, in the absence of the therapy,
represent a decrease in fitness. For example, responses to
pesticides typically require upregulation of xenobiotic metabo-
lism. This is a low fitness cost adaptation but nevertheless is
apparent in the common observation that resistance to a toxic
agent declines with time after the agent is withdrawn. Interest-
ingly, adaptations to a predator appear to involve a much larger
change in phenotype that may compromise other vital activities.
These types of adaptations may exact high fitness cost which is
evident in the observations that pest control with biologic agents
is generally far more successful and durable than with chemicals.
Based on this, we propose cancer therapies that exact a high cost
of adaptation will generally be more successful in controlling a
population.”®

An example of such strategies is the “evolutionary double-bind
therapy” in which cellular adaptations to one treatment renders it
increasingly vulnerable to a second therapeutic attack, and vice
versa. Thus, evolutionary approaches anticipate the cancer cell's
ability to evolve resistance and attempt to gain therapeutic
benefit by either exploiting or blocking the expected adaptive
strategies.

Here we examine the evolutionary dynamics of tumor cell
adaptation to mono- or multidrug chemotherapies using tradi-
tional treatment strategies. We demonstrate that the simulation
outcomes are consistent with clinical observations. We then
explore possible evolutionarily enlightened therapeutic strate-
gies. Finally, we examine the consequences of the tumor micro-
environment on all therapeutic treatments. We find that
treatments that would ordinarily be effective in homogeneous
tumors fail when the cancer is nonhomogeneous due to regions
of hypoxia and ischemia.

B EXPERIMENTAL SECTION

Tumor Cell Evolution to a Population Suppressing Treat-
ment. We model cancer treatments as “predators” on the growth
rates of tumor cells. We start with a tumor population growing
logistically, subjected to proliferation suppression from a treat-
ment:

ox K—x

at rx( K ) e
where r is the cell's growth rate in the absence of limitations, K is
the carrying capacity, u is cell mortality or suppression from the
treatment, and x is the population density of tumor cells.

The proliferation suppression, u, due to a chemotherapy
regimen is constructed as a “predator” by considering the three
aspects of ecological predation.” The first of these is the
encounter rate of predators with its prey. In ecology, this
parameter increases with the abundance and activity of predators.
This can easily be mapped to chemotherapy attributes such as
dosage. The second aspect considers the lethality of the predator
in the absence of vigilance of the prey. In ecology, this parameter
increases with the ability of a prey to survive when directly

confronted with a predator. For our model, this can be char-
acterized as either the drug eflicacy or the baseline resistance of a

Cost of Evolution on Tumor Carrying Capacity
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Figure 1. Cost of resistance to therapy. As the tumor population
evolves phenotypic resistance, the cost of that resistance is reflected in
a decreasing carrying capacity. The magnitude of this cost is reflected by
the parameter Ok.

tumor cell to a chemotherapy. The third aspect considers the
effectiveness of vigilance in reducing the lethality of the predator.
In our model this translates to the effectiveness of resistance
employed by a tumor cell.

Therefore, the term u is given by:

m

e b+ by

where m is the dose of therapy administered and k is the baseline
phenotypic resistance to a treatment in the absence of any
evolved resistance and may be high in some tumors indicating
that the tumor is resistant to this form of therapy even prior to
administration. The term b, is also added as the amount of
resistance that a tumor cell enjoys due to environmental factors
such as hypoxia or ischemia.

The survival benefit to the cancer cell from evolving resistance
in response to treatment is the term b,*v, where b, is the
effectiveness of the resistance strategy in promoting safety, and
v is the evolutionary strategy of the tumor cells in reaction to the
treatment. The initial state of the tumor cell prior to evolving any
level of resistance is represented by ¥ = 0. Any intrinsic or a priori
resistance is encompassed in the k term. With this expression,
u declines toward some minimum level as the cell's strategy
v increases away from 0 at a rate scaled by the effectiveness of the
resistance strategy, b,. A small b, means that the resistance
strategy is ineffective, and a large b, means it is very effective at
suppressing the treatment.

The cost of resistance (Figure 1) in our model comes as a
penalty to the tumor population's carrying capacity, K. Resource
cells used to defeat therapy toxicity are diverted from mainte-
nance and proliferation, thus reducing the carrying capacity:

K = I<max exp F
K

Under this formulation, the carrying capacity declines according

to a Gaussian curve as a cell's resistance strategy, v, deviates from

0. No resistance to the treatment, v = 0, maximizes the carrying

capacity at Ki,,,. The rate of decline in carrying capacity with the

cell's resistance strategy is determined? the variance term of the
K

Gaussian curve, 0%. For this model, does not represent the
standard “niche breadth” as it would in ecological models. Rather,
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it represents the penalty to the tumor cell from evolving
resistance. The value of 0% will be a function of the actual
resistance pathway used by the tumor cell. If evolving resistance
requires simple upregulation of an already existing pathway, 0%
will be large, resulting in a small penalty. On the other hand, if a
significant phenotypic change is required, such as changes in
metabolic processes, 0 will be small, resulting in a large penalty
to the tumor cell when evolving treatment resistance. By
anticipating the resistance pathway that tumor cells will utilize
for a specific treatment, oncologists and drug researchers can
predict treatment-specific costs of resistance to the cell.

The specific design of growth rate, r, proliferation suppression,
U, and evolutionary cost included in K of our model describe but
one of many possible formulations. For example, it is possible
that tumor cells may not be growing logistically but instead grow
exponentially or according to some other density-dependent
growth model. Modeling how a treatment suppresses tumor
growth may also take alternative forms depending on the mode
of action (kinematics), tumor type, and stage or the explicit
number of cells present in the treated population.'® The cost to
the cell of evolving resistance may not only include reductions of
carrying capacity, but also other growth rate parameters. We feel
the present model captures the essential features of treatment
resistance and provides a tool for investigating its consequences
and manifestations.

Darwinian Dynamics. Darwinian dynamics couples popula-
tion dynamics with strategy dynamics to model the evolutionary
process. Consider that a tumor is a population of cells that, by
virtue of inheritance and common ancestry, have the same set of
evolutionarily feasible phenotypes. We can describe their fitness
and population dynamics using a fitness generating function or
G-function."" The vector, u, gives all of the phenotypic strategies
currently present in the tumor

u = [ul"'”i}

The vector, x, indicates the current population sizes of each of
these extant strategies («; is the population size of those cells with
strategy ul)

X = [xy+ x5

The G-function gives the per capita growth rate of some focal cell
using strategy v within a population of tumor cells described by u
and x. This yields an evolutionary game among the tumor cells as
each cell's fitness is determined by its strategy and the strategies
and population sizes of other cells. Our model of tumor growth in
response to therapy gives the following G-function:

The fitness function for any individual using the strategy u; can be
obtained by evaluating G at v = u;. By changing v to any strategy
of the strategy set, one can see how the fitness of a focal individual
is influenced by its strategy, v, the strategies employed by the
other cells, 4, and the density of the cells, x. In our present model,
the strategy of the focal individual, ¥, and the density of cells, «,
directly influence the fitness of a focal cell. The strategies of other
cells, u, do not directly influence the focal cell but do so indirectly
via the effect of others' strategies on the cell density and the
tumor’s growth rate (see below).

Following Fisher's Fundamental Theorem of Natural Selec-
tion, the population's mean strategy value evolves in the direction
of increasing fitness given by the fitness gradient dG/0v:

8”,‘ - 8G
a* o
v

=u;

where s scales the speed of evolutionary change.'> The speed of
evolutionary change will be large for tumor populations with high
genetic variability, high mutation rates, and high cell population
size. The population size of the tumor changes with respect to G
evaluated at v = u,.

Together the population dynamics, (9x,/dt), and the strategy
dynamic, (u;/dt), represent the complete Darwinian dynamics
of the system. The ecological (changes in x) and evolutionary
(changes in u) dynamics generally converge on an “evolutionarily
stable strategy” (ESS). An ESS is a strategy (or coexisting set of
strategies) which cannot be invaded by cells with rare alternative
strategies. At an ESS the system becomes both ecologically
[(9x;/0t) = 0] and evolutionarily stable [(3G/dv) = 0].”

B RESULTS AND DISCUSSION

The G-function can be used to examine the evolution of
resistance in a tumor population subjected to chemotherapy
regimens. We first evaluated a monotherapy requiring a single
adaptive strategy. While monotherapy is relatively uncommon in
current clinical oncology, it provides a useful starting point. Most
modern cancer therapies employ multidrug regimens where the
mechanism(s) of phenotypic resistance to the multiple drugs
may be similar or different. Therefore, we next examine a
multidrug therapy where the mechanism of adaptation to each
of the drugs is the same. For example, upregulation of xenobiotic
metabolism such as p-glycoprotein can sometimes confer resis-
tance to multiple drugs.'* We evaluate a third therapy where the
cell's resistance strategy is drug-specific. The cell must evolve
different drug-specific strategies to gain resistance to the combi-
nation therapy.

We let each of these basic models begin with a population
density x = 100 representing the maximum carrying capacity
of K = 100. For consistency across analyses we set the
growth rate to r = 0.1, the cost of resistance to 0% =5, and the
effectiveness of the resistance strategy to b, = 5. Let the
tumor populations start with minimal baseline phenotypic
resistance
(k=0.1) and no de novo environmental resistance (b, = 0.0).

‘We examined the monotherapy with a drug dosage of m; = 0.1
(Figure 2). A multidrug therapy requiring the same evolutionary
response can be modeled by increasing the dose of an existing
treatment. To do this we simply added the dosage of a second
treatment with an exposure of 0.12 onto the prior exposure for a
combined m;,, = 0.22.

Next, we examined a multidrug therapy where each drug
required a distinct phenotypic adaptation. In this example, the
two treatments act independently in suppressing tumor growth,
and the tumor cell has treatment-specific resistance responses.
The fitness function now includes a separate ¢ for each treat-
ment, and there is an associated phenotypic resistance strategy v;
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Evolutionary Effects on Tumor Population
During Monotherapy Requiring Single Response

Evolutionary Effects on Tumor Population
During Multidrug Therapy Requiring One Response

Evolutionary Effects on Tumor Population
During Multidrug Therapy Requiring Two Responses
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Figure 2. Evolutionary effects on tumor population. Without the ability of phenotypic evolution, shown as dotted lines, these treatments would be more
than sufficient to eliminate the tumor. Unfortunately, with evolution of phenotypic resistance, treatments are unable to eradicate the tumor population.

Fractional Resistance and Tumor Population
During Pulsed Multidrug Therapy Requiring
Single Response

Fractional Resistance and Tumor
During Pulsed Monotherapy

Fractional Resistance and Tumor Population
During Pulsed Multidrug Therapy Requiring

Two Responses
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Figure 3. Top axis: the fractional resistance, v, to the one or two treatments given over time; bottom axis: the population density of the tumor. Periods
of treatment (S0 time units) alternate with periods of no treatment (50 time units).

and v, associated with each treatment, respectively.

— (1) =5 (n)

The two resistance strategies of the cell combine to exact a cost
on the cell's carrying capacity. We have kept the same Gaussian
form as the previous examples but now add the strategies
together to determine how they impact carrying capacity. For
this example we kept m; = 0.1 and m, = 0.12 to compare against
two treatments requiring one response.

In the absence of any evolution, all three therapies successfully
eliminated the tumor population. Unfortunately, with evolution,
monotherapy resulted in only a 27% reduction in cell density at
the ESS of u = 1.06. The multidrug therapy requiring a single
strategy response resulted in a 43% reduction in cell density at an
ESS of u = 1.45. This additional 16% drop is due to cells diverting
more resources from proliferation to cope with the multidrug
treatment. The multidrug therapy requiring two independent
responses resulted in a 62% drop in cell density with an ESS of
u; = 0.93 and u, = 1.02. Though resistance emerged more slowly
when multiple adaptive strategies were required, the therapy
eventually became ineffective.

Commonly, chemotherapy involves an infusion of a drug into
the patient. In between infusions, the drug clears the body, and
there are lengths of time with little to no drug present. We can

model these sorts of pulsed treatments by alternating periods
when the treatment is present (50 time units) with periods when
it is absent (S0 time units). For each of the three regimens we
followed the ecological and evolutionary dynamics of the tumor
cells (Figure 3).

In all three cases, when the drug is not present in the system
(exposure is zero), the tumor population grows logistically.
Between treatments, tumor growth is only limited by the de-
creased carrying capacity caused by the tumor cells' resistance
strategy. With each treatment cycle the population size and
resistance strategy of the cancer cells fluctuate, but the overall
evolutionary trajectory is toward increased resistance. The increase
in resistance when the treatment is active is much larger than the
decrease in resistance that occurs when the drug is absent. In these
types of mono and multidrug therapies, the cost of resistance is not
great enough to evolve back to having no resistance. With enough
cycles, the tumor population becomes completely resistant, and
the fluctuations in tumor size become small.

Thus, consistent with clinical observations, multiple drugs
using different mechanisms for cell destruction and requiring
different adaptive strategies improve tumor response. Unfortu-
nately, the tumor cells can still adapt so that complete tumor
eradication will not be commonly observed, again consistent with
clinical observations."

Evolutionary Double-Bind Therapies: Adaptation to One
Treatment Increases Vulnerability to the Other. We propose
that cancer therapy needs to become more strategic by anticipating
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Fractional Resistance and Tumor Population
During Double Bind Therapy
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Figure 4. Top axis: the fractional resistance, v, to the two treatments
given over time; bottom axis: the population density of the tumor.

the evolutionary response of the tumor cells and then exploiting it.
One such approach uses one therapy to both kill cancer cells and
drive evolution toward a phenotype that can then be targeted by a
second therapy. This is similar to predator facilitation in which one
predator is able to exploit the prey's adaptive response to another
predator.'>'® Here we alter the model so that resistance to one
treatment makes the cell more vulnerable to the other treatment.
In the formulation below, evolving resistance to one treatment
reduces the effectiveness of evolving resistance to a second
treatment, and vice versa.

— m
/’tl o kl + bel =+ (I*VZ)(bpl*Vl)
my
22

- k2 + be?, + (1 —Vl)(bpz*'l/z)

All parameters have been kept the same as with the previous
models shown. The two therapies are given sequentially, switching
every S0 time units. This shows how each treatment drives the
tumor cells toward a treatment-specific adaptation that makes
them more susceptible to other treatment (Figure 4).

The double bind therapy begins by administering only the first
drug. This forces the tumor cells to increase phenotypic resis-
tance to the first drug and decrease phenotypic resistance to the
second drug. This dynamic makes the tumor cells susceptible to
the second drug in two distinct ways. First, the cells actually de-
evolve their resistance to the second drug so as to enhance their
effectiveness in adapting to the first drug. This leaves the cells
directly susceptible to the second drug once administered.
Second, if the cells evolve resistance to both drugs, the benefit
of one cancels out the benefit of the other and vice versa, leaving
the tumor cells sensitive to both drugs while continuing to
exhaust resources to maintain resistance. Keeping this in mind,
any evolution of resistance to the second drug will be less
beneficial to the tumor cells until the strategy conferring resis-
tance to the first drug decreases.

Though the tumor population may appear relatively stable
after some time during this double bind treatment, the tumor
population is constantly exhausting resources as it switches
between evolutionary responses.

A recent study of the pS3 cancer vaccine with chemotherapy
may represent a double-bind therapy.'” The study tested for the
immunologic and clinical effects of the pS3 cancer vaccine in
patients with lung cancer. On its own, the p53 vaccine did not

Fractional Resistance and Tumor Population
During p53 Vaccine and Subsequent Chemotherapy
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Figure S. Top axis: the fractional resistance, v, to the two treatments
given over time; bottom axis: the population density of the tumor.

yield a significant clinical response. Yet, follow-up chemotherapy
achieved a response rate of 62%. Historically, the response rate to
this second line chemotherapy is <8%. Furthermore, the best
chemotherapy response was seen in those patients who had the
best immune response (based on blood studies) to the pS3
vaccine. It is likely that the tumor cells adapted to the immu-
notherapy by down-regulating p53, rendering them more vulner-
able to the chemotherapy. Below we use the model to show this
potential double bind (Figure S).

A treatment mimicking the pS3 vaccine is given for the first
100 time units. This treatment is not cytotoxic. The only decrease
in cancer cell population density comes from the decline in carry
capacity, the cost of increasing resistance. In our model, the
resistance to pS3 increases to 0.6. During the next 50 time units,
neither the pS3 vaccine nor chemotherapy is administered. While
there may be some loss of resistance to the pS3 treatment during
this time, it is not substantial. Lastly, the cytotoxic chemotherapy
treatment, which is a double bind with the pS3 vaccine, is
administered for the last 100 time units. Due to the high
resistance the cells have to the pS3 vaccine, the chemotherapy
has drastic and potentially decisive effects on the tumor popula-
tion density.

Consequences of De Novo Environmental Resistance. The
tumor microenvironment can play a large role in conferring de
novo resistance. The microenvironment of the tumor volume is
primarily governed by vasculature structure and blood flow. A
consistent, functioning blood supply reduces overall heteroge-
neity of the tumor by regularly supplying nutrients and removing
metabolites. On the other hand, a dysfunctional vasculature
creates chaotic blood flow and tumor subregions of hypoxia
and ischemia."®

Here we assume that environmental resistance results from
these regions of hypoxia and ischemia that reduce local
delivery of a drug. This is a simplification since other factors
likely play a role such as hypoxia-induced reductions of the
cytotoxicity of some drugs even in normal concentration
because of the need for an oxygen radical intermediate to
induce cell damage."’

To show the microenvironmental effects, we repeat the same
three treatments discussed above, but we give the tumor popula-
tions de novo environmental resistance. All parameters are kept
the same except for moderate environmental resistance. We
change b, = 0 (indicating no environmental resistance) to b, = 1.
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Environmental Effects on Tumor Population

During Monotherapy Requiring Single Response

Environmental Effects on Tumor Population
During Multidrug Therapy Requiring One Response

Environmental Effects on Tumor Population
Dqﬂng Multidrug Therapy Requiring Two Responses
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Figure 6. Consequences of denovo environmental resistance, which can be seen immediately. Even without the ability of phenotypic evolution, shown

as the dotted lines, the monotherapy cannot eliminate the tumor population. The denovo environmental resistance allows faster evolution of phenotypic
resistance and less overall effect on tumor population.
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The de novo environmental resistance renders monotherapy
ineffective, even if the cells have no ability to evolve phenotypic
resistance. Monotherapy causes only a 22% reduction in cell
density at an ESS of u = 0.94. Multidrug therapy requiring just
one strategy response causes a 40% reduction in cell density u =
1.33, and multidrug therapy requiring two responses causes a
52% decrease at u; = 0.80 and u, = 0.90.

The results generated from tumor populations enjoying no de
novo environmental resistance (Figure 2) applies to cancers that
have relatively uniform phenotypes and are well-perfused, such as
testicular cancer and some lymphomas.*® However, the majority
of epithelial cancers including lung, breast, colon, kidney, and
pancreas are heterogeneous and give results more consistent with
Figure 6.>' Weak initial exposure to the treatment provides a
refuge for tumor cells allowing a buildup of evolutionary resis-
tance before irrecoverable losses in tumor cell population
density.

We examine the double-bind therapy under environmental
resistance 7. All parameters have been kept the same as with the
previous examples given.

The population density drops 44% on average. This is a 24%
increase above the double bind therapy given with no environ-
mental resistance. Fortunately, the double-bind therapy is still
forcing the tumor cells to constantly exhaust resources as they
evolutionarily switch between the two resistance strategies.

2099

These forced evolutionary dynamics will provide long-term
control of the tumor population and prevent repopulation, as
would otherwise be seen with monotherapy and multidrug
therapies.

B CONCLUSION

We developed an evolutionary model of tumor response and
adaptation to various therapeutic strategies. In general we
demonstrated that the evolutionary capacity of cancer cells
severely limit the probability for robust tumor control using
systemic, cytotoxic drugs. In fact, tumor populations typically
begin to show emergence of a resistant population after a single
treatment even when the cost of resistance is high.

Consistent with clinical observations, we demonstrate that
increasing the dosage of a single treatment or administering two
treatments that require one or two independent evolutionary
responses is more effective in reducing the tumor population, but
the tumor will typically survive and recur with resistant cells.

We explore an alternative strategy which we have termed
“evolutionary double bind therapy”. In this approach, the me-
chanisms of adaptation to two treatments are explicitly consid-
ered in designing the administration of the treatments. The goal
is to use the tumor cells' adaptation to one treatment to increase
the effectiveness of the second treatment. Model simulations
demonstrate that such a strategy will not result in complete tumor
eradication but may yield prolonged control of the tumor—
far in excess of the results obtained from conventional therapeu-
tic strategies.

Finally, our models demonstrate the highly significant role of
environmental factors in the evolution of therapy resistance in
cancer. We consistently find that drug therapies that would
ordinarily be effective in a homogeneous tumor fail when tumor
characteristics are heterogeneous. These characteristics, such as
regions of hypoxia and ischemia, inhibit the intended dosage of
the drug and allow subsets of tumor cells to rapidly evolve
resistance. Models of the double-bind strategy demonstrate that
tumor control can be more consistently achieved even in
heterogeneous tumor environments. However, our models
clearly indicate that greater focus on controlling the tumor
microenvironment as part of cancer therapy is imperative to
improve clinical outcomes.

In conclusion, development of more lethal drugs, including
targeted therapies, may achieve some tumor response, but
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durable control will be unlikely because the evolutionary capacity
of cancer cells. We particularly highlight the environmental
contribution to the evolutionary dynamics of resistance that
results from vascular heterogeneity commonly observed in hu-
man cancer. In fact, we find that the evolution of resistance, even
in phenotypically sensitive cells, is a virtual certainty in poorly
perfused regions of a tumor. Thus, we propose that durable
control of clinical cancer will require not new drugs, but funda-
mental changes in therapeutic strategies to overcome or exploit
these sources of resistance.
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